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Abstract—By analysis of the scalar potential forms of the fields,
it is shown that energy orthogonality conditions for a discretely
inhomogeneously-filled waveguide are actually a special case of
the more general power orthogonality conditions when the fields
are purely TE or TM. Power orthogonality expressions for hybrid
modes may be expressed in a new form in terms of the TE and
TM contributions of the H-field alone or the E-field alone. This
form involves only a dot product, simplifying practical analysis
when the fields are expressed in terms of TE and TM components,
and clarifies the relationship between energy orthogonality and
power orthogonality.

I. INTRODUCTION

M ODE ORTHOGONALITY in cylindrical waveguides

containing isotropic media has been conventionally

expressed in two forms, one called energy orthogoncdity,

another called power orthogonality [1]. Derivations of each

may be found in [2, pp. 389–390] and [3], respectively.

Energy orthogonality does not apply when the waveguide is

inhomogeneous except in the special cases, as will be shown,

when the modes are TE or TM. For homogeneously-filled

waveguid~s of arbitrary cross section, energy orthogonality

is expressed as
.“

H E :M .E:M ds = O, ~#~> (1)

where the integration is over the cross-section of the wave-

guide, the TE and TM superscripts refer to the scalar potential

from which the fields are derived, and the t subscript indicates

the transverse portion of the field. The more general power

orthogonality expression for a cylindrical waveguide loaded

with an inhomogeneous, isotropic material is

//
Et, x Ht, . az ds = 0, ~+jl (3)

where a. is the axial unit vector, It is possible to show

that energy orthogonality is a special case of power orthog-

onality when the modes are purely TE or TM. Under these

circumstances, (3) may assume a form similar to (1) and (2).

Furthertnore, power orthogonality may be expressed in terms

of dot-products of components of the E-field alone or the

H-field alone.
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Fig. 1. Cross-section of a discretely inhomogeneously -filled cylindrical
waveguide.

II. ANALYSIS

Fig, 1 shows the cross-section of a discretely inhomoge-

neously-filled waveguide, uniform in the z-direction, con-

sisting of several adjacent subregions where each subregion

consists of an isotropic, homogeneous dielectric. For such a

waveguide it is in general not possible to find solutions that

are purely TM or purely TE to the waveguide axis. However,

the fields may be constmcted as a superposition of TM and

TE modes.

In each homogeneous region, TM and TE solutions may be

written in terms of a scalar potential, p(u, v, z) = O(U, w)Z(Z),

where u and w are the cross-sectional coordinates and z is the

axial coordinate [2, p. 381]. Using operator notation such that

(4)

the constituents of the potential satisfy the following equa-
tions,

V:?J + I@$= o, (5)

(YZ
~+k:z=o, (6)

with

k: + k; = k2 = Wzji;, (7)
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where kC is the transverse wave number, kZ is the axial wave

number, and the hat over # and e indicates that they may be

complex. The axial fields are given by

E. = ~~mZm
j’we

Hz= j&eZe, (8)

where the superscripts m and e indicate a TM or a TE

component, respectively. Applying boundaV conditions of the

continuity of E, and Hz at the interface between homoge-

neous regions it is evident that Zn, Z=, and kZ must be the

same in all regions of the waveguide, Otherwise, the boundary

condition equations are z-dependent. Choosing traveling wave

solutions, we write

Zrn = ze = ~J~z~ (9)

The transverse fields are then given in terms of the potentials

as

[ 1Ht = (Vt~m x a,) + ~(Vt~e) e~~z”, (lo)
Wp

and

[ 1Et=~(Vt~m) – (Vt~e X aZ) e~k”’. (11)
we

Using (10) and (11), it may be shown that

Htxaz= --& [k’E:M + k:E:E] . (12)

Since k. and w are not functions of the cross-sectional

coordinates, by interchanging dot and cross products in (3),

the orthogonality condition may be rewritten as

~j&,~[ 11k2@M+k:E~ ds = 0,
~ #~. (13)3

For certain inhomogeneously-filled waveguide configurations,

non-hybrid modes, i.e., TM modes or TE modes, will propa-

gate in an inhomogeneously-filled waveguide. An example is

the @symmetric modes of a coaxially-loaded circular cylin-

drical waveguide. In such cases for TM modes (13) becomes

// ‘M.E;Mds=(),:Et% ~ ~+~> (14)

and for TE modes

Similar equations can be written for the magnetic field, i.e.,

//Ht;[~2H;E+~,H;M]ds =0, i+j, (16,

/./
j2H~E . H:E = O, ~#.i. (18)

For a homogeneously-filled waveguide, where only TM or

TE modes exist, it is clear how these equations specialize

to (1) and (2). On the basis of these equations, the cavity

orthogonality conditions given by Barrington are not valitd in

general [2, p. 432]. The equation given for the electric field is

valid only for TM modes while the equation for the magnetic

field is valid only for TE modes.

III. CONCLUSION

Energy orthogonality in discretely inhomogeneously-filled

cylindrical waveguides has been shown to be a special case

of power orthogonality when the fields are purely TM or TE.

Additionally, an alternative form of the power orthogonality

expression has been derived. This alternative form requires

knowledge of only one of the fields, E or I/, albeit divided

into TE and TM contributions, and involves no cross products.
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