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Energy and Power Orthogonality in Isotropic,
Discretely Inhomogeneous Waveguides

E. B. Manring and J. Asmussen, Jr., Fellow, IEEE

Abstract—By analysis of the scalar potential forms of the fields,
it is shown that energy orthogonality conditions for a discretely
inhomogeneously-filled waveguide are actually a special case of
the more general power orthogonality conditions when the fields
are purely TE or TM. Power orthogonality expressions for hybrid
modes may be expressed in a new form in terms of the TE and
TM contributions of the H-field alone or the E-field alone. This
form involves only a dot product, simplifying practical analysis
when the fields are expressed in terms of TE and TM components,
and clarifies the relationship between energy orthogonality and
power orthogonality.

I. INTRODUCTION

ODE ORTHOGONALITY in cylindrical waveguides

containing isotropic media has been conventionally
expressed in two forms, one called energy orthogonality,
another called power orthogonality [1]. Derivations of each
may be found in [2, pp. 389-390] and [3], respectively.
Energy orthogonality does not apply when the waveguide is
inhomogeneous except in the special cases, as will be shown,
when the modes are TE or TM. For homogeneously-filled
waveguides of arbitrary cross section, energy orthogonality
is expressed as

//E{M.E;SMdszo,

//EEE-E};Eds=O, i # 9,

where the integration is over the cross-section of the wave-
guide, the TE and TM superscripts refer to the scalar potential
from which the fields are derived. and the ¢ subscript indicates
the transverse portion of the field. The more general power
orthogonality expression for a cylindrical waveguide loaded
with an inhomogeneous, isotropic material is

//Etlet]-azds:O, 1 # J,

where @, is the axial unit vector. It is possible to show
that energy orthogonality is a special case of power orthog-
onality when the modes are purely TE or TM. Under these
circumstances, (3) may assume a form similar to (1) and (2).
Furthermore, power orthogonality may be expressed in terms
of dot-products of components of the F-field alone or the
H-field alone.
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Cross-section of a discretely inhomogeneously-filled cylindrical
waveguide.

Fig. 1.

II. ANALYSIS

Fig. 1 shows the cross-section of a discretely inhomoge-
neously-filled waveguide, uniform in the z-direction, con-
sisting of several adjacent subregions where each subregion
consists of an isotropic, homogeneous dielectric. For such a
waveguide it is in general not possible to find solutions that
are purely TM or purely TE to the waveguide axis. However,
the fields may be constructed as a superposition of TM and
TE modes.

In each homogeneous region, TM and TE solutions may be
written in terms of a scalar potential, ¢(u, v, 2) = ¥(u,v)Z(z2),
where u and v are the cross-sectional coordinates and z is the
axial coordinate [2, p. 381]. Using operator notation such that

d

Vi=V - —
t aza

4)

the constituents of the potential satisfy the following equa-
tions,

Vi + k2 =0, )
8%z
55 +k2Z =0, (6)
with
k24K =K = wPje, (7)
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where k. is the transverse wave number, k, is the axial wave
number, and the har over u and ¢ indicates that they may be
complex. The axial fields are given by
k2
E,=_“Symzm
Jwe
k2
H z = f_c_AweZ e’ (8)
Jwp
where the superscripts m and e indicate a TM or a TE
component, respectively. Applying boundary conditions of the
continuity of E, and H, at the interface between homoge-
neous regions it is evident that Z,,,, Z., and %k, must be the
same in all regions of the waveguide. Otherwise, the boundary
condition equations are z-dependent. Choosing traveling wave
solutions, we write

Zm = 2° = et ©

The transverse fields are then given in terms of the potentials
as

H, = [(Vtv,bm X a,)+ —sz (Vﬂ/)e)} ejkzz, 10)
wit
and

E, = [%(vtw) — (Vi x az)} eika2 (11)

Using (10) and (11), it may be shown that
-1

H; xa, =
t z Wﬂkz

[K2E™ + K2ZETR]. (12)
Since %k, and w are not functions of the cross-sectional
coordinates, by interchanging dot and cross products in (3),
the orthogonality condition may be rewritten as

1
[ [ B PED B as =0, iz 0y

For certain inhomogeneously-filled waveguide configurations,
non-hybrid modes, i.e., TM modes or TE modes, will propa-
gate in an inhomogeneously-filled waveguide. An example is
the ¢-symmetric modes of a coaxially-loaded circular cylin-
drical waveguide. In such cases for TM modes (13) becomes

//eEEM EfMds =0, i#j, (14)

and for TE modes

//%EEE-EEJ%S:O, i # j. (15)

Similar equations can be written for the magnetic field, i.e.,

//Hn%[kQH;fEﬂLkEHtTJM] ds=0, i#j, (16)

[ [zrmmpi=o. izg an
€ J

//QHZE.HZ;E =0, i#]. (18)
For a homogeneously-filled waveguide, where only TM or
TE modes exist, it is clear how these equations specialize
to (1) and (2). On the basis of these equations, the cavity
orthogonality conditions given by Harrington are not valid in
general [2, p. 432]. The equation given for the electric field is
valid only for TM modes while the equation for the magnetic
field is valid only for TE modes.

III. CONCLUSION

Energy orthogonality in discretely inhomogeneously-filled
cylindrical waveguides has been shown to be a special case
of power orthogonality when the fields are purely TM or TE.
Additionally, an alternative form of the power orthogonality
expression has been derived. This alternative form requires
knowledge of only one of the fields, £ or H, albeit divided
into TE and TM contributions. and involves no cross products.

REFERENCES

[1] R.B. Adler, “Waves on inhomogeneous cylindrical structures,” Proc.
IRE, vol. 40, pp. 339-348, Mar. 1952.

{21 R.F. Harrington, Time-Harmonic Electromagnetic Fields.
McGraw-Hill, 1961.

[3]1 R.E. Collin, Field Theory of Guided Waves, 2nd ed. New York: I[EEE
Press, 1991, pp. 333-337.

New York:




